
Journal of Forestry Research (2014) 25(1): 87–95 
DOI 10.1007/s11676-014-0434-5 

 

 
 

 
 

Influence of climatic conditions, topography and soil attributes on the 
spatial distribution of site productivity index of the species rich forests 
of Jalisco, Mexico 
 
Adel Mohamed • Robin M. Reich • Raj Khosla 
C. Aguirre-Bravo • Martin Mendoza Briseño 
 
 
 
 
Received: 2012-10-28;       Accepted: 2013-02-26 

© Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2014 

Abstract:  This paper presents an approach based on field data to model 

the spatial distribution of the site productivity index (SPI) of the diverse 

forest types in Jalisco, Mexico and the response in SPI to site and cli-

matic conditions. A linear regression model was constructed to test the 

hypothesis that site and climate variables can be used to predict the SPI 

of the major forest types in Jalisco. SPI varied significantly with topog-

raphy (elevation, aspect and slope), soil attributes (pH, sand and silt), 

climate (temperature and precipitation zones) and forest type. The most 

important variable in the model was forest type, which accounted for 

35% of the variability in SPI. Temperature and precipitation accounted 

for 8 to 9% of the variability in SPI while the soil attributes accounted for 

less than 4% of the variability observed in SPI. No significant differences 

were detected between the observed and predicted SPI for the individual 

forest types. The linear regression model was used to develop maps of 
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the spatial variability in predicted SPI for the individual forest types in 

the state. The spatial site productivity models developed in this study 

provides a basis for understanding the complex relationship that exists 

between forest productivity and site and climatic conditions in the state. 

Findings of this study will assist resource managers in making 

cost-effective decisions about the management of individual forest types 

in the state of Jalisco, Mexico. 

Keywords: Best management practices, climate change, spatial predic-

tions, tropical dry forests, weighted least squares 

 
 
Introduction 
 
The state of Jalisco, located in the western-pacific region of 
Mexico (20°34′0″ N, 103 40′35″ W), is known for its diverse and 
unique communities of endemic and specialized species of plants, 
animals, reptiles, and amphibians. One reason for this diversity is 
that the state occurs within a transition zone between the temper-
ate north and tropical south which provides a wide variety of 
ecological conditions from tropical forests in the western part of 
the state to semi-arid shrublands in the east. The tropical dry 
forests in the region are among the richest tropical dry forests in 
the world, and have more endemic tree species than elsewhere in 
the Neotropics (Challenger 1998), while forests found in the 
temperate climate region are recognized as a center of diversity 
for the Quercus genus (Nixon 1993). Climatic conditions play an 
important role in the diversity and distribution of forest types in 
the state of Jalisco (Reich et al. 2010). 

The trees in these forests are an important resource to the local 
inhabitants by providing a wide range of products for survival 
and prosperity. With growing populations, the increased demand 
for food and firewood has accelerated the exploitation of these 
forests through grazing, fuel wood activities, selective logging 
and other economic activities (Pande 2005). These disturbances 
impact both the diversity and productivity of the forests. Soil 
characteristics, climatic factors and management may also affect 
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site quality and thus the inherent site potential (Reich et al. 2010). 
Understanding the patterns in forest productivity in relation to 
the type and severity of disturbances as well as other important 
ecological drivers is critical for land resource management pur-
poses (Ma et al. 2006).  

Site productivity can be defined in many ways, depending on 
the objectives of resource managers. For example, from a con-
servation perspective, productivity could be defined as the ability 
of a site to maintain its diversity while providing goods and ser-
vices to the local inhabitants. From a forest management per-
spective, productivity is generally defined as the ability of a site 
to produce wood volume (Avery and Burkhart 2002). Since 
volume growth is difficult to obtain in the field, site index has 
become the most widely used method to evaluate the potential of 
a site to produce wood volume (Gustafson et al. 2003, Pokharel 
and Dech 2011). Site index is estimated by first measuring the 
age and height of dominant trees on a site. These measurements 
are then substituted into an equation or looked up on a chart to 
obtain an estimate of site index (Avery and Burkhart 2002). This 
method has proved useful for stand level management of 
even-aged stands consisting of a single or group of commercially 
important tree species, but is of limited use in the diverse, un-
even-aged forests found in Jalisco.  

In Jalisco, Mohamed et al. (2012) developed a simple and 
quick approach to quantifying the productivity of the major for-
est types in the state based on the height-diameter relationship of 
dominant trees (Huang and Titus 1992; Vanclay and Henry 
1988). Known as the site productivity index (SPI), this approach 
uses the expected height of a dominant tree at a defined reference 
diameter as a measure of site productivity. The advantage of this 
approach is that it does not rely on tree age, which is difficult if 
not impossible to obtain for the majority of tree species found in 
the state. In Mohamed’s study the biggest challenge was select-
ing a tree species to represent the productivity of a site (Mo-
hamed et al. 2012). Haung and Titus (1993), for example, de-
veloped SPI curves for each of the dominant trees species (white 
spruce (Picea glauca (Moench) Voss), lodgepole pine (Pinus 
contorta Dougl.), trembling aspen (Populus tremuloides Michx.), 
and black spruce (Picea mariana (Mill.) B.S.P.)) found growing 
in boreal mixed-species stands of Alberta, Canada.  In Jalisco, 
however, 538 species are known to occur and no one species, or 
group of species, occurs with high enough frequency to represent 
the conditions found in all forest types (Reich et al. 2008a). Also, 
most of the tree species that occur in the tropical and semi-arid 
regions of the state have limited commercial value. So the SPI 
curves developed by Mohamed et al. (2012) ignored tree species 
and used the tallest trees on the sample plots to represent the 
productivity of a site. These models have made it possible to 
characterize the productivity of forests in Jalisco which is fun-
damental for the management and sustainability of the spe-
cies-rich forests in the state. 

While the spatial patterns in the productivity of the forests 
have changed considerably in recent times, further changes are 
likely. These changes may result from influences of regional 
policies, socio-economics and climate change. Therefore, under-
standing how forest productivity might respond to global envi-

ronmental change drivers is a research question of considerable 
importance. The first step, however, in projecting potential future 
changes in forest productivity is to understand and represent in 
models both the socio-economic and bio-physical processes that 
control current patterns in forest productivity. The objective of 
this study was to identify the ecological factors influencing the 
large-scale spatial variability site productivity index (SPI) among 
the diverse forest types of Jalisco. The study uses spatial models 
based on field data to predict SPI of the major forest types in 
Jalisco (Mohamed et al. 2012) and the response in SPI to site and 
climatic conditions. Cross-validation procedures are used to 
evaluate the predictive performance of the models. Regional 
scale applications of the models are undertaken through the use 
of spatially-variable, geographic data sets (soils, climate and 
topography). 
 
 
Materials and methods 
 
Study area 
 
The state of Jalisco, which covers 7.9 million hectares, is char-
acterized by three major ecological regions: 1) tropical zone is 
located in the west part of the state along the Pacific coast and is 
characterized by high temperature, rain during the summer 
month (730−1,200 mm), and an annual dry period that lasts for 5 
to 9 months. Tropical dry forests dominate this zone with eleva-
tion ranging from sea level to 2,000 m; 2) Temperate zone occurs 
at the higher elevations 1,000−2,500 m and covers a large part of 
the state with average annual rainfall of 900−1,500 mm. Pine, 
oak and mixed deciduous hardwood forests dominate this region. 
This zone gradually changes to 3) Semi-arid region located in the 
eastern part of the state which is characterized by low annual 
precipitation with a dry period lasting 6−8 month. The vegetation 
in this region is dominated by mesquite-acacia and zerophitic 
shrubs (Reich et al. 2008a).  

Sandy loam and sandy clay loam are the dominant soil textural 
classes in the state (Sergio 1997; Pongpattananurak et al. 2012). 
These two soil classes occur primarily in the central portion of 
the state dominated by grasslands and agricultural lands. Sandy 
clay loam soils also occur in the coastal region dominated by 
tropical dry forests and in the semi-arid region in the eastern part 
of the state. Soils are acidic to neutral with pH ranging from 5.8 
to 7.0. Soils are derived primarily from volcanic rock and are 
slightly acidic at the lower elevations and in the central and 
western part of the state. As the elevation increases the soil pH 
becomes more acidic. Soils are characterized by very loose sur-
face layer with abundant organic matter. Soil depth ranges from 
10 cm to more than 1 m in depth. 
 
Site productivity index 
 
In 2004, 1,442 permanent sample plots (Fig. 1A) were located 
throughout the state, of these 815 plots were classified as for-
ested plots. The site productivity index (SPI) was estimated for 
each of the forested sample plots using models developed by 
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Mohamed et al. (2012) for the eight major forest types in the 
state: pine (PN), pine-oak (PO), oak (OK), oak-pine (OP), tropi-
cal semi-evergreen forests (SM), tropical dry forests (SB), sub-
tropical scrub (MS) and mezquital- huizachal (MH). Estimates of 
SPI were based on the assumption that the productivity of a site 

was proportional to the total tree height of a dominant tree with a 
30 cm or 50 cm reference diameter, depending on the forest type. 
The height of the dominant tree was defined as the average of the 
five tallest trees on a 30 m × 30 m sample plot, irrespective of 
tree species. 

 

Fig. 1. Temperature zones (A) and precipitation zones (B) of Jalisco, Mexico. The locations of the 1,442 permanent sample plots used in the study are 

overlaid on the temperature zones (A). 

 
 
GIS data 
 
GIS raster layers included a digital elevation model (elevation, 
slope and aspect), climatic data (Reich et al. 2008b) and soils 
information (sand, silt, clay and pH) (Pongpattananurak et al. 
2012). GIS raster layers representing 30 year average monthly 
temperatures (°C) and precipitation (mm) were used to identify 
three temperature zones and four precipitation zones in combina-
tions that defined 12 unique climatic zones (Fig. 1; Reich et al. 
2008b). The climatic zones were based on a histogram equaliza-
tion approach that produced a uniform distribution of tempera-
tures and precipitations across the state (Acharya and Ray 2005). 
Zonal statistics were used to summarize the variability in tem-
peratures and precipitation in each of the 12 climatic zones. The 
digital elevation model was obtained from the National Elevation 
Dataset as a seamless raster surface at a 90 m resolution (U.S. 
Geological Survey (USGS), Gesch et al. 2002) and resampled to 
a 30 m resolution using a bilinear interpolation technique (Eden-
ius et al. 2003). This produced a more continuous surface re-
flecting gradual changes in elevation at a 30 m spatial resolution. 
The values of elevation, slope, aspect, soils information and cli-
matic zones were extracted from the grid layers and assigned to 
the individual sample plots. 

Binary surfaces representing the presence and absence of indi-
vidual forests types across climatic zones were developed. If a 
climatic zone contained at least one sample plot of a particular 

forest type it was assigned a value of one, while climate zones 
which did not contain a particular forest type were assigned a 
value of zero. The binary surfaces were used as a mask when 
developing predictive surfaces of SPI for individual forest types 
and to understand how dependent forest types are to climatic 
conditions in the state. 

 
Modeling site productivity index  
 
A linear regression model was constructed to test the hypothesis 
that site and climate variables can be used to predict the site 
productivity index (SPI) of the major forest types in Jalisco. 
Independent variables used in the model included soil texture 
(sand, silt and clay), soil pH, elevation, aspect, slope, tempera-
ture zone, precipitation zone and forest type. Forest type and the 
temperature and precipitation zones were treated as categorical 
variables in the analysis. Interactions between the categorical 
variables (forest types, temperature and precipitation zones) and 
continuous variables (pH, aspect, elevation, slope and soil tex-
ture) were included in the model. A stepwise AIC (Venables and 
Ripley 2002) was used to identify the set of predictors that 
minimized the AIC. 

Residual analysis was performed to evaluate the underlying 
assumptions of the regression model in describing the variability 
in SPI. Preliminary analysis indicated that the variability in the 
error associated with estimating SPI increased with increasing 
SPI. To account for this variability, weighted least squares was 
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used to estimate the coefficients of the regression model. Pre-
liminary analysis also indicated that the variance or residuals 
from the regression model were not proportional to any of the 
explanatory variables in the model. As an alternative, a variance 
function, which is a form of regression analysis, was developed 
to describe how the variance changed as a function of predictors 
(Efron and Tibshirani 1993). To estimate the error variance, the 
absolute values of the residuals were taken as estimates of the 
standard deviation and regressed on the predicted estimates of 
SPI, using polynomial regression. Polynomial regression mod-
els were fitted successively starting with a linear term then a 
quadratic term and so on until no further improvement was ob-
served in the AIC (Akaike 1969). The weights used in the re-

gression analysis were defined as, 21 ii sw = , where 2
is  is the 

estimated variance associated with the ith estimate of SPI. An 
iterative procedure was used to estimate the coefficients of the 
regression model and variance function: 

Step 1: Start with a preliminary estimate of the regression co-

efficients, β̂ . 

Step 2: Estimate the variance function and compute the esti-
mated weights, iw . 

Step 3: Let Gβ̂ be the weighted least-squares estimate of the 

regression coefficients using the estimated weights from step 2. 
Step 4: Update the preliminary estimates of the regression co-

efficients by setting β̂ = Gβ̂ and updating the variance function 

and weights. 
Step 5: Repeat steps 3 and 4, M-1 more times until the models 

converge based on some user defined criteria. 
 

Cross-validation 
 

A 10-fold cross validation was used to evaluate the predictive 
performance of the model (Reich et al. 2004). The data was split 
into 10 parts consisting of approximately 84~85 sample plots. 
Each subset of data consisted of observations from each forest 
type roughly proportional to the frequency of occurrence in the 
complete data set; with at least one sample plot from each forest 
type. The first subset of data was removed from the data, and the 
model fitted to the remaining 9 parts of the data and then the 
fitted model was used to predict the part of the data removed 
from the modeling process. This procedure was repeated 10 
times. The prediction errors were then inferred from the pre-
dicted minus the actual values. This information was used to 
generate a set of statistics to evaluate the predictive performance 
of the model. Bias was examined using a t-test that tested 
whether the prediction errors from the cross-validation for the 
individual forest types differed significantly from zero. 

 
GIS maps of SPI 

 
Raster layers representing the spatial variability in SPI for each 
forest type were developed by applying the regression coeffi-
cients to the appropriate raster layers using the raster calculator 
in ArcGIS 9.3 (ESRI 2008). A surface representing the expected 
site productivity was developed by multiplying the individual 

layers of SPI for the various forest types by the probability of 
observing a forest type in a given climate zone: 

 

( )[ ] ( ) ( )
=

=
F

f
f sSPIsfpsSPIE

1

|                      (1) 

 
where, ( )[ ]sSPIE  is the expected SPI at spatial location 

s, ( )sfp |  is the conditional probability of observing forest type 

f (f = 1, 2, …, F) given the spatial location s, and ( )sSPI f  is the 

predicted SPI for forest type f at spatial location s. The condi-
tional probabilities were taken as the proportion of sample plots 
of a particular forest type that occurred in a given climatic zones. 
This surface represents the most likely SPI for a particular loca-
tion given the influence of site and climatic factors on the pro-
ductivity and distribution of the forest types in the state. 
 
 
Results 
 
Data 
 
Summary statistics of the explanatory variables evaluated in the 
model are summarized in Table 1. The most productive forest 
types, expressed in terms of the expected height of the dominant 
tree at a given reference diameter (SPI), were the pine (PN) and 
pine-oak (PO) forest types with an average SPI of 21 m (Table 3). 
The lowest SPI was recorded by the subtropical scrub (MS) (SPI 
= 7 m) and mezquital-huizachal (SPI = 8 m) forest types. The 
other four forest types had an average SPI ranging from 13 m to 
17 m. 
 
Table 1. Summary statistics of the variables used to describe stand pro-

ductivity index (SPI) of the forest types in the state of Jalisco, Mexico 

Variable  Minimum Mean Maximum Std. Dev. 

Elevation (m) 16.0 1322.1 3173.0 717.7 

Sand (%) 12.1 61.0 97.2 9.6 

Clay (%) 1.4 15.8 46.1 6.2 

Silt (%) 7.3 23.2 41.9 4.7 

pH  3.2 6.2 8.7 0.5 

Aspect (degree) 0 180.4 359.4 100.4 

Slope (%) 0.0 14.0 40.5 8.0 

 
Site productivity index model 
 
Weighted least squares was used to estimate the coefficients of 
the regression model describing the influence of site and climatic 
variables on SPI. A third-degree polynomial was used to estimate 

the standard deviation ( iŝ ) to define the weights associated with 

individual estimates of SPI: 
 

( ) ( ) ( ) ( )
411.2,815

0007.00324.04467.09136.1
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          (2) 
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where, iP̂ is the estimated SPI on the ith sample plot, and the 

numbers in parentheses are the standard errors associated with 
the estimated coefficients in the variance function. 
The site productivity index varied significantly with topography 
(elevation and slope), soil attributes (pH and sand), climate 
(temperature and precipitation zones) and forest type (Table 2). 
 
Table 2. Estimated regression coefficient and associated statistics for the 

regression model used to describe the variability in site productivity 

index (SPI) for the major forest types in the state of Jalisco, Mexico 

Variable 
Estimated 

Coefficient 

Standard 

Error 
P-value

Intercept 21.113 3.515 <0.001 

Pine-Oak (PO) -3.008 2.470 0.224 

Oak (OK) -9.164 2.856 0.001 

Oak-Pine (OP) -6.193 2.552 0.015 

Tropical Semi Evergreen (SM) -10.460 2.926 <0.001 

Tropical Dry  (SB) -12.189 2.575 <0.001 

Subtropical Scrub (MS) -15.869 2.466 <0.001 

Mezquital – Huizachal (MH) -13.932 2.526 <0.001 

Sand (%) 0.036 0.013 0.008 

Elevation (m) -0.001 0.0004 0.029 

Slope (%) 0.037 0.017 0.025 

Moist Zone -9.086 3.450 0.009 

Damp Zone -7.859 3.415 0.022 

Wet Zone 1.866 0.772 0.016 

Warm Zone 4.568 2.538 0.053 

Hot Zone -5.731 4.383 0.191 

PO:Moist -3.441 3.841 0.371 

OK:Moist 9.607 3.777 0.011 

OP:Moist 5.914 3.684 0.109 

SM:Moist 11.360 3.978 0.004 

SB:Moist 9.380 3.518 0.008 

MS:Moist 9.290 3.440 0.007 

PO:Damp 10.388 3.723 0.005 

OK:Damp 8.800 3.724 0.018 

OP:Damp 7.092 3.568 0.047 

SM:Damp 10.757 3.830 0.005 

SB:Damp 9.457 3.482 0.007 

MS:Damp 8.266 3.411 0.016 

MH:Damp 7.512 3.659 0.040 

OK:Wet 0.105 1.626 0.949 

SM:Wet 2.196 1.821 0.228 

SB:Wet 0.351 1.051 0.738 

pH:Cool -0.043 0.293 0.884 

pH:Warm -0.607 0.274 0.027 

pH:Hot 1.120 0.623 0.072 

 
The final model explained 52% of the observed variability in 

the SPI. The most important variable in the model was forest 
type, which accounted for 42% of the variability in SPI. Precipi-
tation accounted for 22% of the variability, while temperature 
and the soil attributes accounted for less than 4% of the variabil-
ity observed in SPI. Predicted SPI were in good agreement with 
measured values (Table 3). No significant differences were ob-

served between the observed and predicted SPI for the individual 
forest types. The mean absolute error between the predicted and 
observed values ranged from 0.02 m to a high of 0.8 m for the 
pine forest (PN) type.  The large error associated with the pine 
forest type may be due to the small sample size (n = 13).  
 
Spatial extent of the major forest types 
 
Binary maps (Fig. 2) showing the presence – absence of the ma-
jor forest types across clime zones were developed to provide 
key information about the environmental niches of the forest 
types being modeled and allow for comparisons between forest 
types (Elith and Leathwick 2009). Some forest types such as oak, 
tropical semi-evergreen forests, tropical dry forests and the 
sub-tropical scrub forest type are generalists and able to adapt to 
a variety of climatic conditions that occurred throughout the state. 
Other forest types were more restricted in their distribution. The 
pine forest type occurred primarily in the central region of the 
state, while the pine-oak forest type was limited to the coastal 
mountains in western part of the state. The region occupied by 
oak-pine forest type was equal to the combined areas of the pine 
and pine-oak forest types.  The mezquital-huizachal forest type 
occurred in the central and eastern part of the state. Since these 
maps were developed to define the spatial extent of the forest 
types for use in the developing the spatial models of site produc-
tivity they are of limited use for other purposes since they are 
based only on climate and do not take into consideration other 
environmental factors that might be important in explaining the 
distribution of forest types in the state. 
 
 

 

 

Fig. 2. Presence (black) and absence (white) of the major forest types in 

Jalisco, Mexico.The maps represent the potential extent of the various 

forest types based on climatic conditions not the actual or realized extent 

of the forest types. 

 
Maps of forest site productivity 
 
The regression model developed to describe SPI in Jalisco may 
be difficult to interpret because of large number of variables and 
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interactions included in the model. The easiest way to understand 
how the various site and climatic variables influence SPI is to 
study the individual surfaces of predicted SPI for the different 
forest types. Examples are provided for the pine forest type, 

which is the default forest type in the regression model and upon 
which all other forest types are based. Other examples are pro-
vided for the tropical semi-evergreen forest type and 
mezquital–huizachal forest type. 

 
Table 3. Comparison of the observed and predicted values of site productivity index (SPI) for the major forest types in the state of Jalisco, Mexico. Pre-

dicted values of SPI are from a 10-fold cross-validation used to evaluate the predictive performance of the regression model developed to predict SPI a 

function of climate, topography and soils 

Observed SPI (m) Predicted SPI (m) Forest1 Type Sample  

Size Min Average Max SD Min Average Max SD
Paired  t-test P-value 

Mean  

difference (m) 

PN 13 9.4 20.3 32.8 7.1 8.0 19.5 26.3 4.4 0.34 0.74 0.81 

PO 88 7.7 21.4 42.1 6.3 19.0 21.3 23.8 1.1 0.03 0.97 0.03 

OK 197 6.2 15.2 31.2 4.6 11.4 15.2 18.7 1.7 -0.02 0.96 -0.02 

OP 54 10.3 16.5 25.6 4.0 11.7 16.5 19.7 1.7 -0.02 0.97 -0.02 

SM 102 7.6 17.3 31.5 4.8 11.9 17.3 20.1 1.7 0.05 0.91 0.05 

SB 277 2.9 13.2 24.3 3.4 7.7 13.2 17.1 1.8 -0.03 0.88 -0.03 

MS 65 3.6 6.8 15.1 2.2 4.3 6.9 9.8 1.4 -0.04 0.87 -0.04 

MH 19 4.3 7.8 10.1 1.6 6.4 7.7 9.9 0.8 0.15 0.73 0.15 

1PN-pine, PO-pine-oak, OK-oak, OP-oak-pine, SM-tropical semi-evergreen, SB-tropical dry forest, MS-subtropical scrub and MH-mezquital–huizachal. 
 
 
Pine forest type (PN).  
Fig. 3 shows the spatial distribution of predicted SPI for the pine 
forest type as calculated from the fitted model (Table 2). The 
broad-scale variation reflects the topography and the climatic 
patterns, and the fine-scale variability reflects variation in soil 
characteristics (e.g., soil texture, pH). The PN forest type occurs 
throughout the central region of the state at elevations ranging 
from 1100 to over 3000 m. The lower foothills region which is 
part of Mexico’s high central plateau runs across the center of 
the region from west to east, at elevations from 1100 to 1500 m, 
and the upper foothills region is primarily located in the western 
part of the region at elevations from 1500 to 2000 m. The highest 
elevations form a ridge that runs north to south at elevations 
from 2000 to 4000 m and includes one of Mexico’s highest vol-
canic peaks, Nevado de Colima (4339 m). Precipitation is posi-
tively correlated with elevation, and elevation is higher in the 
western part of the region, and decreases in an easterly direction 
to drier and cooler conditions (Fig. 1B).  According to the 
model productivity was high at the highest elevations and de-
creased with decreasing elevation. The most productive pine 
sites were characterized as having a high sand content of 
60%−70% which is characteristic of the high elevation forests. 
The moderate productive sites found in the upper foothills region 
have soils with a sand content of 50%−60% while the lowest 
productive sites have soils with a sand content < 50%. In the 
warm temperature zone (T2; Fig. 1A) the pine forest type was 
less productive on soils with moderate silt content (16%−26%) 
compared to similar soils in the mild temperature zone (T1; Fig-
ure 1A). Pine productivity was higher on more acidic soils (pH < 
6.1) characteristic of the high elevation sites than less acidic soils 
(6.1 < pH < 7.0) found in the drier regions. Sites with an easterly 
aspect had lower productivity than sites with a westerly aspect. 

 
Tropical semi-evergreen (SM)  
Fig. 4 shows the spatial distribution of predicted SPI for the 
tropical semi-evergreen forest type. The SM forest type occurs 
throughout the state and productivity closely follows the 
large-scale variability in temperature and precipitation (Fig. 1). 
Forests west of the mountain ridgeline in the coastal region of 
the state are more productive than forests that occur east of the 
ridgeline. All of the factors that influence the small-scale vari-
ability (e.g., soil texture and pH) in pine productivity have a 
similar influence on the productivity of the SM forest type. 
 
Mezquital–Huizachal (MH).  
Fig. 5 shows the spatial distribution of SPI for the 
mezquital–huizachal forest type. The MH forest type occurs in 
the central and eastern part of the state. Productivity decreases in 
an easterly direction with increasing elevations and decreasing 
trends in precipitation and temperatures (Fig. 1). Elevations in-
crease from 1200 m in the central part of the state to over 2200 m 
in the eastern part of the state. Again, all of the factors that in-
fluence the small-scale variability in pine productivity have a 
similar influence on the productivity of the MH forest type. 
 
Average SPI.  
Fig. 6 shows the spatial distribution of the most likely SPI for a 
particular location given the influence of site and climatic factors 
on the productivity and distribution of the forest types in the state. 
The expected SPI closely follows the large-scale variability in 
precipitation. The most productive forests (15 < SPI < 40) are 
found in the tropical region along the Pacific coast, followed by 
the high elevation forests found in the temperate region (11 < 
SPI < 14) and then the semi-arid region (2 < SPI < 10) in the 
eastern part of the state. 
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Discussion 
 
The objective of this study was to identify ecological factors 
influencing the site productivity of the forests in Jalisco, Mexico. 
The results of the study indicated that forest type, soil attributes 
(pH and sand), and topographic variables (elevation and slope) in 
addition to climate variables were the important ecological vari-
ables in describing the large-scale variability in forest site pro-

ductivity. These results were similar to the results found by 
Reich et al. (2010) for defining the pattern of species richness in 
the state. Forest type was the most important variable, account-
ing for 42% of the variability observed in SPI. The second most 
import variable was precipitation which accounted for 22% of 
the variability in SPI. While temperature accounted for less than 
4% of the variability in SPI, it is clear that the forest site produc-
tivity followed the temperature and precipitation gradients in the 
state, suggesting that temperature patterns and water limitations 
are important factors controlling regional patterns in productivity 

Fig. 3.  Estimated site productivity index (SPI) for the pine 

forest type in Jalisco, Mexico 
Fig. 4.  Estimated site productivity index (SPI) for the tropical 

semi-evergreen forest type in Jalisco, Mexico 

Fig. 5.  Estimated site productivity index (SPI) for the 

mezquital–huizachal forest type in Jalisco, Mexico 
Fig. 6.  Expected site productivity index (SPI) given the influence 

of climatic factors on the productivity and distribution of the forest 

types in Jalisco, Mexico 
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(Reich et al. 2010). Temperature and precipitation directly influ-
ence the metabolic processes of photosynthesis and plant respira-
tion (Bradford 2011; Peters et al 2013). 

 The spatial patterns in site productivity are very complex and 
no one model would be expected to capture all of this variability. 
To model such complex spatial patterns, it is generally assumed 
that the data can be decomposed into two components: a mean 
structure representing the large-scale variation and a stochas-
tic-dependent structure representing the small-scale variation 
(Cressie 1994). The model developed in this study may be 
thought of describing the large-scale patterns in regional produc-
tivity potentials and representing the upper limit on site produc-
tivity (Grier et al. 1989). The unexplained variability in the 
model may be thought of as representing the small-scale or local 
variability in site productivity.  At the local scale, intrinsic fac-
tors such as soil moisture-holding capacity, soil nutrient status, 
and soil porosity influence plant growth and the productivity 
potential of a site. Natural disturbances such as fire, insects, dis-
ease, and erosion can also alter the intrinsic factors that influence 
the soil forming processes, vegetation development, and site 
productivity at the local scale (Grier et al. 1989). 
Socio-economic factors also contribute to altering or depleting 
forest cover and affect forest structure and species composition 
of the forests through grazing, fuel wood activities, selective 
logging and other economic activities (Agramont et al. 2012; 
Gilba et al. 2011; Moreno-Sanchez et al. 2012). All of these fac-
tors have a long-term impact on ecosystem services and the 
maximum productive potential of a site (Foster et al. 2003; 
Gough et al. 2008). Many of these important small-scale proc-
esses cannot be represented explicitly in model, and so must be 
included in approximate form as they interact with larger-scale 
features. This is partly due to limitations in scientific under-
standing of the process involved or in the availability of detailed 
observations of some physical processes. Significant uncertain-
ties, in particular, are associated with the representation of site 
productivity, and in the resulting responses in site productivity to 
climate change. Some of the factors influencing this uncertainty 
include: (1) estimates of SPI used in this study may not reflect 
the true productivity of a site, (2) site variables are not respon-
sive to small changes in site productivity; and (3) estimates of 
site productivity were based on multiple tree species.  Despite 
such uncertainties, the model provided unbiased estimates of SPI 
for the major forest types in the state. 

Climate models are predicting that the tropical dry forests will 
experience relatively large changes in temperature and rainfall 
towards the end of this century (Brienen et al. 2010). The tropi-
cal dry forests in Mexico are likely to be more affected by 
changes in soil water availability caused by the combined effects 
of changes in temperature and rainfall than by changes in tem-
perature alone. Lower rainfall and higher temperatures increase 
water stress and may accelerate forest loss in many areas where 
water availability is already marginal (Condit et al. 2004). Infer-
ences on the likely impact of climatic changes on the tropical dry 
forest type as well as the other forest types in the state are im-
possible to make without a thorough understanding of the influ-
ence of site and climatic conditions on the diversity and produc-

tivity of the forests in the state. The model developed in this 
study is the first step in understanding the impact of climate 
change on the spatial distribution and productivity of the forest 
types in the state. Distribution models like those developed here 
greatly add to assessments of the relative importance of site and 
climatic factors on the productivity of various forest types and in 
doing so, offer arguments for which forest types should or should 
not be harvested, what forest types deserve priority in their 
management, and which forest types might be significantly im-
pacted by climate change. The maps of site productivity can help 
decision makers identify the locations of especially sensitive 
forest types to climate change; estimate and predict the impact of 
these changes on ecosystem services; and prioritize and decide 
on the best kinds of management options and where to imple-
ment them.  
 
 
Conclusions 
 
The spatial site productivity index identified using the ecological 
variables showed to be a useful indicator of site productivity in 
the diverse forest types of Jalisco, Mexico.  An important find-
ing of this analysis is that forest type is the most significant 
variable for determining the productivity of a site. The spatial 
site productivity models developed in this study provide a basis 
for understanding the complex relationship that exists between 
forest productivity and site and climatic conditions in the state. It 
is clear that the spatial site productivity models are reliable and 
accurate within the ecological ranges of the data. This study 
documents an important approach for understanding the relation 
between forest productivity and site variables and how site pro-
ductivity can be estimated using these relations. These models 
could be linked to climate models to predict the impact of cli-
mate change on the distribution and productivity of the forest 
types in the state. For example, if it is hypothesized that precipi-
tation will decrease the information characterizing distribution of 
forest types within the various climatic zones could be used to 
provide information on how forest productivity would change 
under different scenarios of changing temperature and/or pre-
cipitation. From these models it would be possible to illustrate 
the impacts of climate change on potential loss in the diversity of 
the flora and fauna, change in water quality, impact on ecosys-
tem services, and so forth. We expect results of this study to be 
used directly to establish best management practices for the for-
est resources in the state. 
 
 
References        
 
Acharya T, Ray AK. 2005. Image processing: principles and applications. 

New York: Wiley, p.452. 

Agramont ARE, Maass SF, Bernal GN, Hernández JIV, Fredericksen TS. 2012. 

Effect of human disturbance on the structure and regeneration of forests in 

the Nevado de Toluca National Park, Mexico. Journal of Forestry Research. 

23: 39−44 

Akaike H. 1969.Fitting autoregressive models for regression. Annals of the 



Journal of Forestry Research (2014) 25(1): 87–95 

 

95

Institute of Statistical Mathematics, 21: 243−247. 

Avery, T.E. and Burkhart, H.E. 2002.  Forest Measurements (5th Ed).  

Madison: McGraw Hill, 456 pp. 

Bradford JB. 2011. Divergence in forest-type response to climate and weather: 

evidence for regional links between forest-type evenness and net primary 

productivity. Ecosystems, 14: 975–86. 

Brienen RJW, Lebrija-Trejos E, Zuidema PA, Martinez-Ramos M. 2010. 

Climate-growth analysis for a Mexican dry forest tree shows strong impact 

of sea surface temperatures and predicts future growth declines. Global 

Change Biology, 16: 2001–2012. 

Challenger A. 1998. Utilización y conservación de los ecosistemas terrestres 

de México. Pasado, presente y futuro. Conabio, IBUNAM y Agrupacion 

Sierra Madre, México. pp. 375–442. 

Cressie N. 1991. Statistics for spatial data. New York: John Wiley and Sons, 

p.928. 

Condit R, Aguilar S, Hernandez A, Perez R, Lao S, Angehr G, Hubbell SP. 

Foster RB. 2004. Tropical forest dynamics across a rainfall gradient and the 

impact of an El Nino dry season. Journal Tropical Ecology, 20:51–72. 

Elith J, Leathwick JR. 2009. Species distribution models: ecological explana-

tion and prediction across space and time. Annual Review of Ecology, Evo-

lution, and Systematics 40: 677–697.  

Ercanli I, Gunlu A, Altun L, Baskent E. 2008. Relationship between site index 

of oriental spruce [Picea orientalis (L.) Link] and ecological variables in 

Mac¸ka, Turkey. Scandinavian Journal Forestry Research, 23:319–329. 

Edenius L, Vencatasawmy CP, Sandstrom P, Dahlberg U. 2003. Combining 

satellite imagery and ancillary data to map snowbed vegetation important to 

Reindeer Rangifer tarandus. Arctic, Antarctic and Alpine Research, 35: 

150–157. 

Efron, B. and Tibshirani, R.J. 1993. An introduction to the bootstrap. New 

York: Chapman and Hall, p.456. 

ESRI. 2008. Environmental Systems Research Institute, Inc., 380 New York 

St., Readlands, CA 97393. USA. 

Foster D, Swanson F, Aber J, Burke I, Brokaw N, Tilman D, Knapp A. 2003. 

The importance of land-use legacies to ecology and conservation. Biosci-

ence 53: 77–88. 

Gesch D, Oimoen M, Greenlee S, Nelson C, Steuck M, Tyler D. 2002. The 

national elevation dataset. Photogrammetric Engineering & Remote Sens-

ing, 68:5–32. 

Gilba EK, Kayombo CJ, Chirenje LI, Musamba EB. 2011. The influence of 

socio- economic factors on deforestation: a case study of the Bereku Forest 

Reserve in Tanzania. Biodiversity, 2: 31−39 

Gough CM, Vogel CS, Schmid HP, Curtis PS. 2008. Controls on annual forest 

carbon storage: lessons from the past and predictions for the future. Biosci-

ence, 58: 609–22 

Gustafson EJ, Lietz SM, Wright JL. 2003. Predicting the spatial distribution 

of aspen growth potential in the upper great Lakes regions. Forest Science, 

49: 499–508. 

Huang S, Titus SJ. 1992. Comparison of nonlinear height–diameter functions 

for major Alberta tree species. Canadian Journal Forest Research, 22: 

1297–1304. 

Huang S, Titus SJ. 1993. An index of site productivity for uneven-aged or 

mixed-species stands. Canadian Journal Forest Research, 23: 558–562. 

Louw JH, Scholes MC. 2006. Site index functions using site descriptors for 

Pinus patula plantations in South Africa. Forest Ecology and Management, 

225: 94–103. 

Ma MD, Jiang H, Liu SR, Zu CQ, Liu Yj, Wang JX. 2006. Estimation of 

forest- ecosystem site index using remote sensed data. Acta Ecologica 

Sinica, 26: 2810–2816. 

Mohamed A, Reich RM, Khosla R, Aguirre-Bravo C, Mendoza Briseño M. 

2012. Site productivity curves for the diverse forest types of Jalisco, Mex-

ico. Madera y Bosques (in press) 

Moreno-Sanchez R, Juan Manuel Torres-Rojo JM, Moreno-Sanchez F, Haw-

kins S, Little J, McPartland S. 2012. National assessment of the fragmenta-

tion, accessibility and anthropogenic pressure on the forests in Mexico. 

Journal of Forestry Research, 23: 529–541 

Nixon KC. 1993. El género Quercus en México. In: Ramamoorthy, T.P., R. 

Bye, A. Lot, y J. Fa (eds), Diversidad Biológica de México. Orígenes y 

Distribución. Instituto de Biología, UNAM. pp. 435–448. 

Pande PK. 2005. Biomass and productivity in some disturbed tropical dry 

deciduous teak forests of Satpura plateau, Madhya Pradesh. Tropical Ecol-

ogy, 46: 229–239. 

Peters EB, Wythers KR, Bradford JB, Reich PB. 2013. Influence of distur-

bance on temperate forest productivity. Ecosystems, 16: 95–110. 

Pokharel B, Dech JH. 2011. An ecological land classification approach to 

modeling the production of forest biomass. The Forestry Chronicle, 87: 

23−32. 

Pongpattananurak N, Reich RM, Khosla R, Aguirre-Bravo C. 2012. Modeling 

the spatial distribution of soil attributes at a regional level: A case study in 

the State of Jalisco, Mexico. Soil Science Society of America Journal, 76: 

199−209. 

Reich RM, Lundquist JE, Bravo VA. 2004. Spatial models for estimating fuel 

loads in the Black Hills, South Dakota, USA. International Journal of 

Wildland Fire, 13: 119–129. 

Reich RM, Aguirrie-Bravo C, Mendoza Briseno, M. 2008a. An innovative 

approach to inventory and monitoring of natural resources in the Mexican 

State of Jalisco. Environmental Monitoring and Assessments, 146: 

383−396. 

Reich RM, Aguirrie-Bravo C, Bravo VA. 2008b. New approach for modeling 

climatic data with applications in modeling tree species distributions in the 

states of Jalisco and Colima, Mexico. Journal Arid Environments, 72: 

1343−1357. 

Reich RM, Bonham DC, Aguirrie-Bravo C, Chazaro-Basañeza M. 2010. 

Patterns of tree species richness in Jalisco, Mexico: relation to topography, 

climate and forest structure. Plant Ecology, 210: 67−84. 

Vanclay JK. 1992. Assessing site productivity in tropical moist forests: a 

review. Forest Ecology and Management, 54: 257–287. 

Vanclay JK, Henry NB, 1988. Assessing site productivity of indigenous cy-

press pine forest in southern Queensland. Commonwealth Forestry Review, 

67: 53−64. 

Venables WN, Ripley, BD. 2002. Modern Applied Statistics with S. (4th Ed.). 

New York: Springer, p.495. 

Wang Y, Frederic R, Chhun H. 2005. Evaluation of spatial predictions of site 

index obtained by parametric and nonparametric methods-A case study of 

Lodgepole pine productivity. Forest Ecology and Management, 214: 

201−211. 

Watt M, David P, Heidi D, Mark K. 2009. Predicting the spatial distribution of 

Cupressus lusitanica productivity in New Zealand. Forest Ecology and 

Management, 258: 27−223. 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


