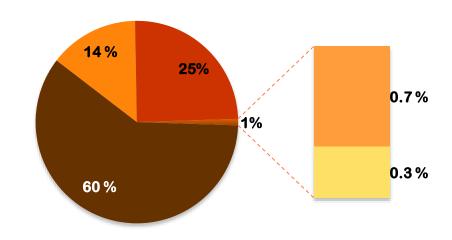


El Mercado de trigo en México:
¿Autosuficiencia alimentaria o Generación de divisas?

María Anel De la Vega Mena

Consejero José Alberto García Salazar

Introducción


- □ El trigo es el segundo grano de mayor producción a nivel mundial
- Más del 60% es utilizada en la alimentación humana
- Por su valor energético más alto que el maíz o arroz
- Su uso es cada vez más común en América Latina y Asia

Producción

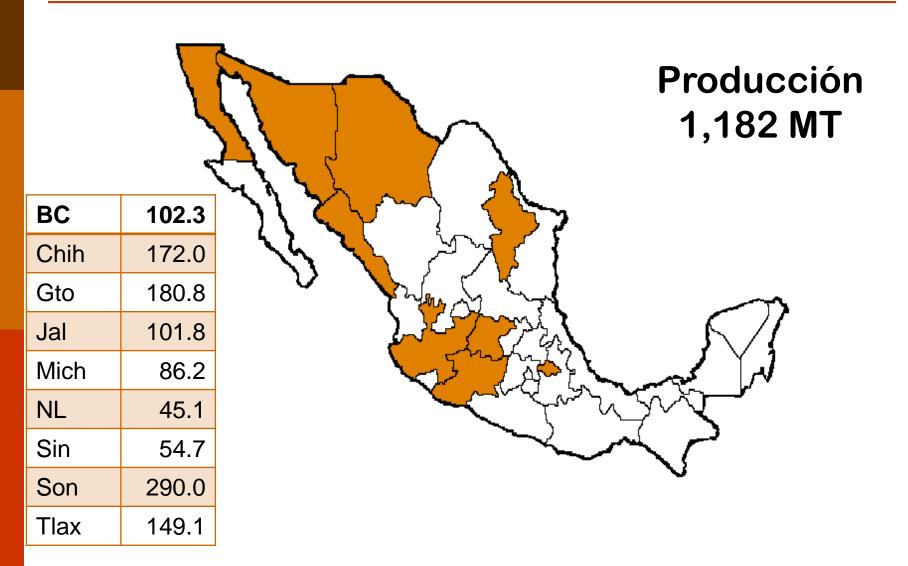
Toneladas		
Cristalino	1,961,488	
Fuerte	468,141	
Suave	810,885	
Medio Fuerte	22,454	
Tenaz	11,369	
Total	3,274,337	

Se producen principalmente 3 tipos de trigo:

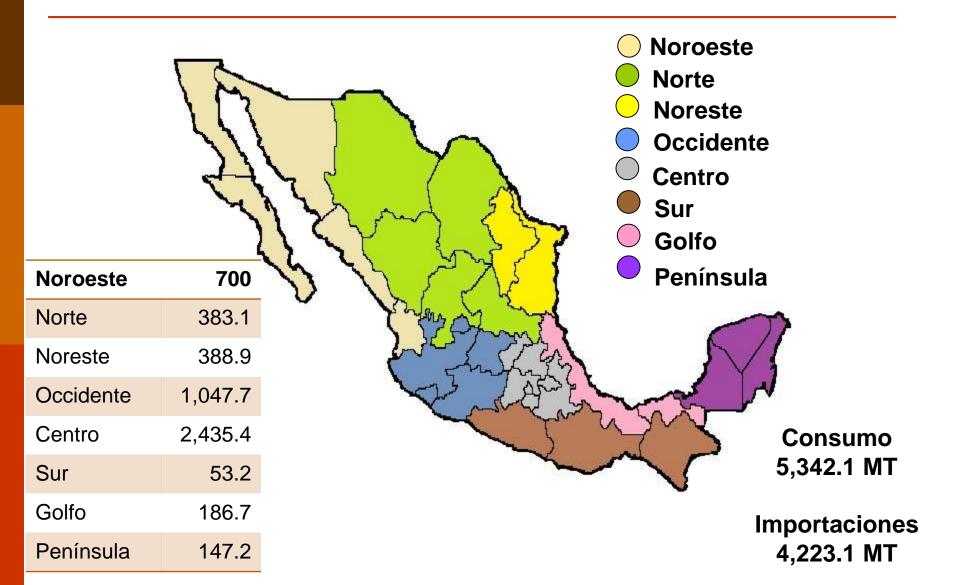
- Cristalino (pastas y macarrones)
- Fuerte (Panificable: Pan industrial y artesanal)
- Suave (Panificable: Galletas y pasteles)

■ Cristalino ■ Fuerte ■ Suave ■ Medio Fuerte ■ Tenaz

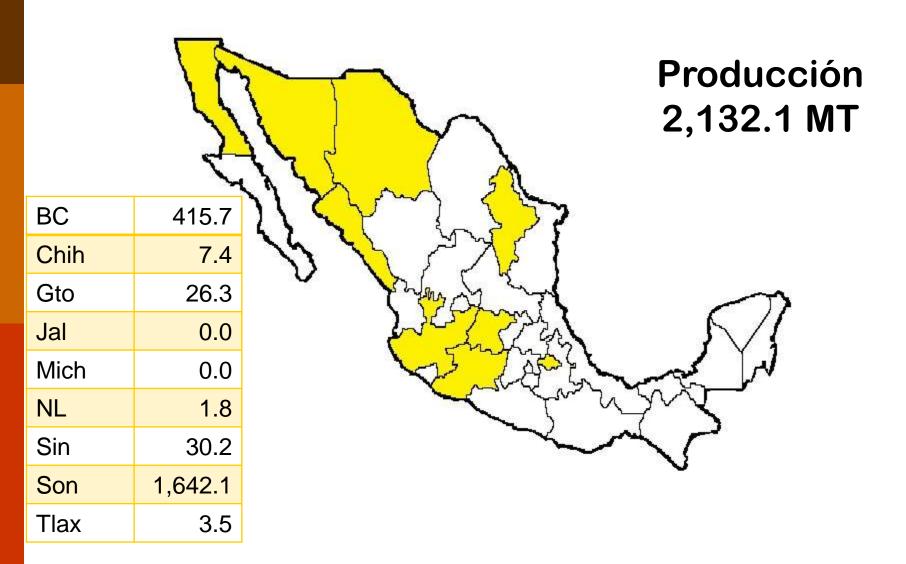
SITUACIÓN NACIONAL DEL TRIGO

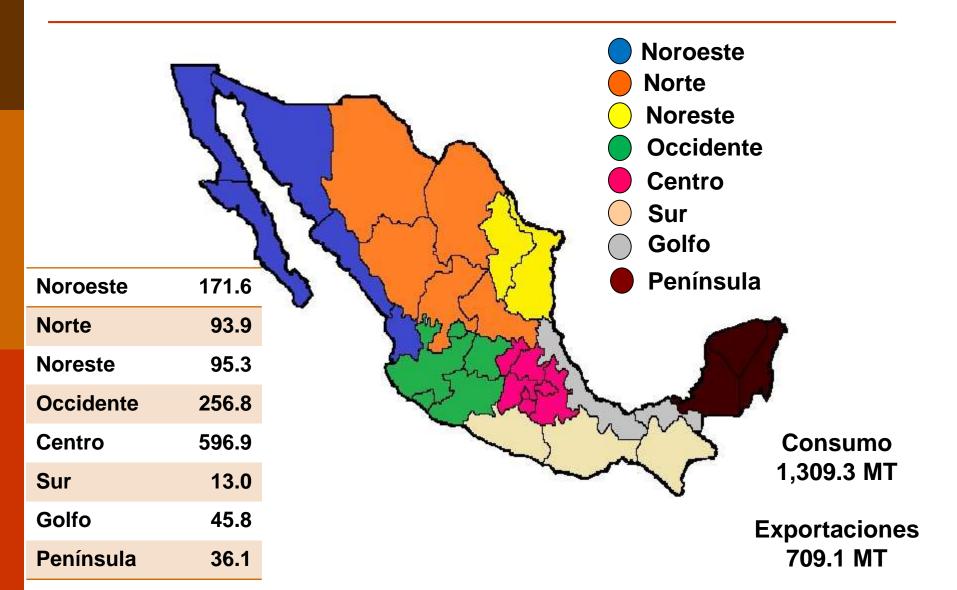

(2012/2014 cifras en miles de toneladas)

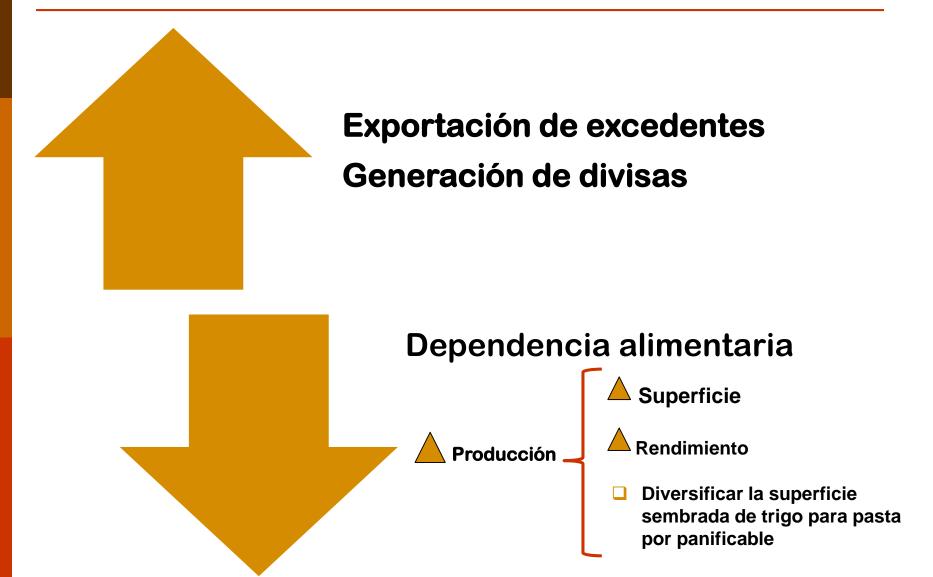
Consumo	6.8 MT
Producción	3.3 MT
Importaciones	4.2 MT


Consumo Nacional Aparente			
Consumo humano	5,398.3	79.1	
Consumo pecuario	1, 065.5	15.6	
Semillas	80.2	1.2	
Mermas	284.1	4.2	
Consumo total	6,828.1	100.0	

Existen dos mercados...


Mercado de Trigo panificable


Consumo de trigo panificable


Mercado de Trigo para pastas

Consumo de Trigo para pastas

¿ Qué se puede hacer para solucionar esta situación?

Al respecto...

- La posición de SAGARPA es diversificar la siembra de trigo para pastas por panificable en el Noroeste mejorando bonos y estímulos de calidad de las cosechas. Impulsar la agricultura de contrato con más énfasis.
- Incrementar la producción de trigo panificable en el Altiplano y Bajío a través de la agricultura de conservación para abatir los costos de producción y generar nuevas variedades más resistentes a sequía y enfermedades.

Planteamiento del problema

¿Desde el punto de vista económico y logístico la mejor alternativa es la especialización ?

¿ Se debe mantener la situación actual en la producción de trigo?

¿Se debe diversificar la superficie sembrada de trigo para pastas por panificable?

Justificación

El beneficio de la propuesta mediar el conflicto entre los mercados del trigo

La conveniencia de uso eficiente de recursos en la producción de trigo

Contrastar distintos escenarios en la producción de trigo harinero para atenuar el déficit

Objetivos

✓ Dar recomendaciones de política que contribuyan al uso eficiente de los recursos(T,L y K) que permitan disminuir la dependencia alimentaria del trigo panificable en México

Para esto es necesario:

- Obtener la balanza de producción-consumo
- La solución de un MEEI que permita evaluar distintos escenarios de uso de la superficie actualmente destinada al trigo para pasta que permita fomentar la producción de trigo panificable

Hipótesis

□ La diversificación de la superficie sembrada de trigo para pastas por panificable disminuirá el déficit en la producción y la dependencia de las importaciones

Metodología

- Para alcanzar los objetivos planteados, se utilizará un modelo espacial e intertemporal para el mercado del trigo en México
- La formulación esta basada en Takayama y Jude (1971) y modelos empíricos desarrollados por :
 - A. Bivings (1997).
 - **B.** Cramer (1993).
 - c. Boyd (1993).
 - Fuller (2003).
 - E. García-Salazar y Williams (2004).

El modelo incluye:

REGIONES PRODUCTORAS (9)

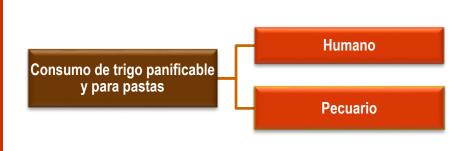
BC, Chihuahua, Guanajuato, Jalisco, Michoacán, NL, Sinaloa y Sonora

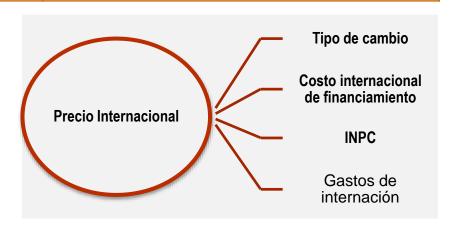
REGIONES CONSUMIDORAS (8)

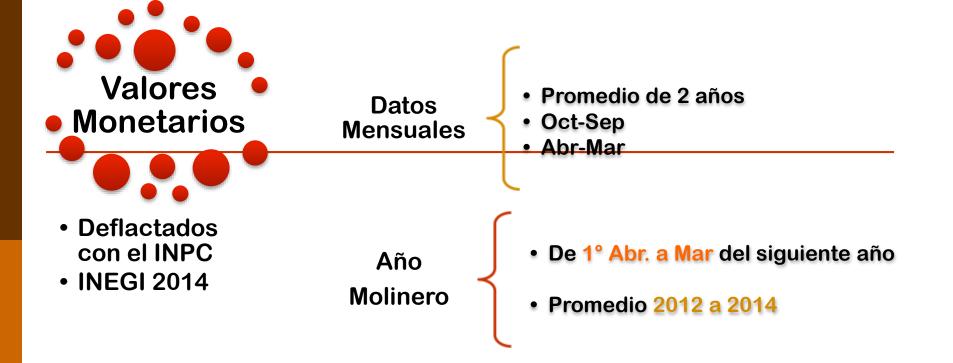
Noroeste, Norte, Noreste, Centro, Sur, Golfo y Península

FRONTERAS/ADUNAS DE IMPORTACIÓN DE TRIGO PANIFICABLE (8)

Cd. Juárez, Lázaro Cárdenas, Nogales, Nvo. Laredo, Piedras Negras, Progreso, Tuxpan y Veracruz

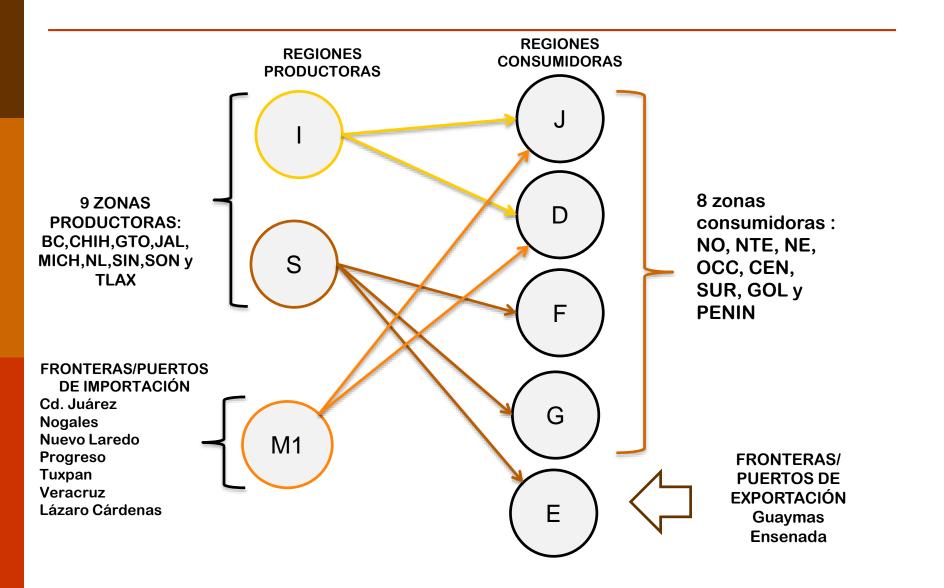

FRONTERAS/ADUANAS DE EXPORTACIÓN DE TRIGO CRISTALINO (2)

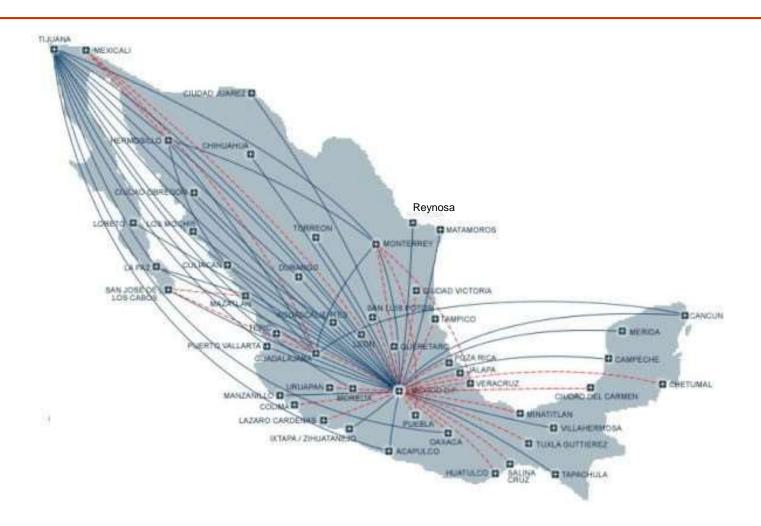

Ensenada y Guaymas


Datos

Basado en Alston (1995) y Kawaguchi (1997), las funciones de oferta y demanda fueron formuladas usando:

Elasticidades de la oferta y demanda	IFPRI 2014
Producción mensual y por región	SIAP-SAGARPA 2012-2014
Consumo Estatal Aparente mensual	INEGI 2009
Precios pagados por el consumidor y recibidos por el productor	Precio internacional ponderado con la tasa libor más(o menos) costo de transporte
M's y X's mensuales	SIC-Agro SAGARPA 2012-2014
Precios internacionales (Cantidad y Valor de las M´s en puerto de entrada y X´s)	SIC-Agro SAGARPA 2012-2014




Costos de transporte	Empresas transportistas y SCT 2014
Costos de Ferrocarril	SCT 2014
Almacenamiento	ANAGD 2014
Inventarios	Un mes de consumo mensual

La solución de modelo será obtenida usando el procedimiento MINOS de GAMS (Brooke 1998)

Diagrama del mercado del trigo en México

En un mapa se ve así...

Modelo del trigo

El Modelo de trigo considera:

PRODUCCIÓN

i (i=1..l=9) Regiones productoras de trigo panificable.

s (s=1,2..S=9) Regiones productoras de trigo pastas.

CONSUMO

j (j=1,2..J=8) Regiones consumidoras de trigo pan-humano

d (d=1,2..D=8) Regiones consumidoras de trigo pan-pecuario.

f (f=1,2..F=8) Regiones consumidoras de trigo pastas-humano.

g (g=1,2..G=8) Regiones consumidoras de trigo pastas-pecuario

IMPORTACIONES

m (m=1,2..M=8) Puertos y /o fronteras de entrada de importaciones de trigo panificable.

EXPORTACIONES

e (e=1,2..E=2) Puertos y lo fronteras de salida de las exportaciones de trigo cristalino.

q (q=1..Q=2) Tipos de transporte.

t (t=1,2..T=12) Meses del año..

t+1(t+1=13) Almacenamiento

 $\pi^{t-1} = (1/1+i_t)^{t-1}$ Factor de descuento con i_t = tasa de inflación.

$$\textit{Max VSN} = \sum_{t=1}^{T} \pi^{t-1} \sum_{j=1}^{J} \left[\lambda_{jt} \ y_{jt} + \frac{1}{2} \omega_{jt} \ y_{jt}^{2} \right] + \sum_{t=1}^{T} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{t=1}^{T} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{t=1}^{T} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{t=1}^{T} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{t=1}^{T} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{t=1}^{T} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{t=1}^{T} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{t=1}^{T} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{t=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{t=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{t=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{t=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{d=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{d=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dj}^{2} \right] + \sum_{d=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dt}^{2} \right] + \sum_{d=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dt}^{2} \right] + \sum_{d=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dt}^{2} \right] + \sum_{d=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dt}^{2} \right] + \sum_{d=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dt}^{2} \right] + \sum_{d=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dt}^{2} \right] + \sum_{d=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \ y_{dt}^{2} \right] + \sum_{d=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{dt} \right] + \sum_{d=1}^{D} \pi^{t-1} \sum_{d=1}^{D} \left[\lambda_{dt} \ y_{dt} + \frac{1}{2} \omega_{d$$

$$\sum_{t=1}^{T} \pi^{t-1} \sum_{f=1}^{F} \left[\lambda_{ft} \ y_{ft} + \frac{1}{2} \omega_{ft} \ y_{ft}^2 \right] + \sum_{t=1}^{T} \pi^{t-1} \sum_{g=1}^{G} \left[\lambda_{gt} \ y_{gt} + \frac{1}{2} \omega_{gt} \ y_{gt}^2 \right] +$$

CONSUMO (Demanda)

$$\sum_{t=1}^{T} \pi^{t-1} \sum_{e=1}^{E} [p_{et} \; x_{et}] - \sum_{t=1}^{T} \pi^{t-1} \sum_{i=1}^{I} \left[v_{it} \; x_{it} + \frac{1}{2} \eta_{it} \; \; x^2_{it} \right] - \sum_{t=1}^{T} \pi^{t-1} \sum_{s=1}^{S} \left[v_{st} \; x_{st} + \frac{1}{2} \eta_{st} \; \; x^2_{st} \right]$$

Valor de las exportaciones

PRODUCCIÓN (Oferta)

$$-\sum_{t=1}^{T}\pi^{t-1}\sum_{m=1}^{M}p_{mt}\,x_{mt}\,-\sum_{t=1}^{T}\pi^{t-1}\sum_{i=1}^{I}\sum_{j=1}^{J}\sum_{q=1}^{Q}p_{ijqt}x_{ijqt}-\sum_{t=1}^{T}\pi^{t-1}\sum_{i=1}^{I}\sum_{d=1}^{D}\sum_{q=1}^{Q}p_{idqt}x_{idqt}-\sum_{t=1}^{T}\pi^{t-1}\sum_{i=1}^{I}\sum_{d=1}^{D}\sum_{q=1}^{Q}p_{idqt}x_{idqt}-\sum_{t=1}^{T}\pi^{t-1}\sum_{i=1}^{I}\sum_{d=1}^{D}\sum_{q=1}^{Q}p_{idqt}x_{idqt}-\sum_{t=1}^{T}\pi^{t-1}\sum_{i=1}^{D}\sum_{q=1}^{Q}p_{idqt}x_{idqt}-\sum_{t=1}^{T}\pi^{t-1}\sum_{i=1}^{D}\sum_{d=1}^{Q}p_{idqt}x_{idqt}-\sum_{t=1}^{D}\pi^{t-1}\sum_{d=1}^{D}\sum_{q=1}^{Q}p_{idqt}x_{idqt}-\sum_{t=1}^{D}\pi^{t-1}\sum_{i=1}^{D}\sum_{q=1}^{Q}p_{idqt}x_{idqt}-\sum_{t=1}^{D}\pi^{t-1}\sum_{i=1}^{D}\sum_{q=1}^{Q}p_{idqt}x_{idqt}-\sum_{t=1}^{D}\pi^{t-1}\sum_{i=1}^{D}\sum_{q=1}^{Q}p_{idqt}x_{idqt}-\sum_{t=1}^{D}\pi^{t-1}\sum_{i=1}^{D}\sum_{q=1}^{Q}p_{idqt}x_{idqt}-\sum_{t=1}^{D}\pi^{t-1}\sum_{q=1}^{D}\pi^{$$

 $\begin{array}{c} \text{Valor de las} \\ \text{importaciones} \\ {}^{T} \end{array}$

Costos de transporte

$$\sum_{t=1}^{T} \pi^{t-1} \sum_{s=1}^{S} \sum_{f=1}^{F} \sum_{q=1}^{Q} p_{sfqt} x_{sfqt} - \sum_{t=1}^{T} \pi^{t-1} \sum_{s=1}^{S} \sum_{g=1}^{G} \sum_{q=1}^{Q} p_{sgqt} x_{sgqt} - \sum_{s=1}^{T} \pi^{t-1} \sum_{s=1}^{S} \sum_{g=1}^{G} \sum_{q=1}^{Q} p_{sqqt} x_{sqqt} - \sum_{s=1}^{G} \pi^{t-1} \sum_{s=1}^{G} \sum_{q=1}^{Q} p_{sqqt} x_{sqqt} - \sum_{s=1}^{G} \pi^{t-1} \sum_{s=1}^{G} \sum_{q=1}^{Q} p_{sqqt} x_{sqqt} - \sum_{s=1}^{G} \pi^{t-1} \sum_{s=1}^$$

$$\sum_{t=1}^{T} \pi^{t-1} \sum_{m=1}^{M} \sum_{j=1}^{J} \sum_{q=1}^{Q} p_{mjqt} x_{mjqt} - \sum_{t=1}^{T} \pi^{t-1} \sum_{m=1}^{M} \sum_{d=1}^{D} \sum_{q=1}^{Q} p_{mdqt} x_{mdqt}$$

 $\sum_{t=1}^{T} \pi^{t-1} \sum_{i=1}^{I} \sum_{e=1}^{E} p_{iet} x_{iet} \sum_{t=1}^{T} \pi^{t-1} \sum_{s=1}^{S} \sum_{e=1}^{E} p_{set} x_{set} -$

$$-\sum_{t=1}^{T} \pi^{t-1} \sum_{i=1}^{I} p_{it,t+1} x_{it,t+1} - \sum_{t=1}^{T} \pi^{t-1} \sum_{s=1}^{S} p_{st,t+1} x_{st,t+1}$$

Costos de

Costos de transporte

RESTRICCIONES

$$\sum_{i=1}^{I} \sum_{q=1}^{Q} x_{ijqt} + \sum_{m=1}^{M} \sum_{q=1}^{Q} x_{mjqt} \ge y_{jt}$$

$$\sum_{i=1}^{I} \sum_{q=1}^{Q} x_{idqt} + \sum_{m=1}^{M} \sum_{q=1}^{Q} x_{mdqt} \ge y_{dt}$$

$$\sum_{s=1}^{S} \sum_{q=1}^{Q} x_{sfqt} \ge y_{ft}$$

$$\sum_{s=1}^{S} \sum_{q=1}^{Q} x_{sgqt} \ge y_{gt}$$

Abasto del consumo

$$\sum_{i=1}^{I} x_{iet} + \sum_{s=1}^{G} x_{set} \ge y_{et}$$
Distribución de las exportaciones
$$\sum_{j=1}^{J} \sum_{q=1}^{Q} x_{ijqt} + \sum_{d=1}^{D} \sum_{q=1}^{Q} x_{idqt} \le x_{it} + x_{it-1,t}$$

$$\sum_{j=1}^{F} \sum_{q=1}^{Q} x_{sfqt} + \sum_{g=1}^{G} \sum_{q=1}^{Q} x_{sgqt} + \sum_{e=1}^{E} x_{set} \le x_{st} + x_{st-1,t}$$
Distribución de la producción

 $\sum_{i=1}^{J} \sum_{t=1}^{Q} x_{mjqt} + \sum_{t=1}^{D} \sum_{t=1}^{Q} x_{mdqt} \le x_{mt}$ Distribución de las importaciones

$$y_{jt}, y_{dt}, y_{ft}, y_{gt}, x_{it}, x_{st}, x_{et}, x_{mt} \ge 0$$

Evaluación de escenarios posibles

Escenario base

- PRODUCCIÓN DE TRIGO PANIFICABLE DEFICITARIA
- TRIGO PARA PASTAS SUPERAVITARIA

Escenario 2

 PARTE DE LA SUPERFICIE DE TRIGO PARA PASTAS SE UTILIZA PARA PROCUDIR TRIGO PANIFICABLE

Escenario 3

 AUMENTO EN EL RENDIMIENTO EN LAS ZONAS PRODUCTORAS ACTUALES DE TRIGO PANIFICABLE EN PROPORCIONES RAZONABLES

Avance de investigación

Concepto	Porcentaje de avance
Planteamiento del problema	100%
Objetivo	100%
Hipótesis	100%
Obtención de datos	100%
Formulación del modelo	70%
Redacción de artículo científico (1°)	Por enviar al Consejo